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ABSTRACT 

In this paper, we consider the task of learning 

interpretable process-based models of dynamic systems. 

While most case studies have focused on the descriptive 

aspect of such models, we focus on the predictive aspect. 

We use multi-year data, considering it as a single 

consecutive dataset or as several one-year datasets. 

Additionally, we also investigate the effect of 

interpolation of sparse data on the learning process. We 

evaluate and then compare the considered approaches on 

the task of predictive modeling of phytoplankton 

dynamics in Lake Zürich.   

 

1 INTRODUCTION 

Mathematical models play an important role in the task of 

describing the structure and predicting the behavior of an 

arbitrary dynamic system. In essence, a model of a dynamic 

system consists of two components: a structure and a set of 

parameters. There are two basic approaches to constructing 

models of dynamic systems, i.e., theoretical (knowledge-

driven) modeling and empirical (data-driven) modeling.  In 

the first, the model structure is derived by domain experts of 

the system at hand, the parameters of which are calibrated 

using measured data. In contrast, the later uses measured data 

to find the most adequate structure-parameter combination 

that best fits the given task of modeling. In both approaches, 

models often take the form of ordinary differential equations 

(ODEs), a widely accepted formalism for modeling dynamic 

systems, allowing the behavior of the system to be simulated 

over time. 

Equation discovery [1, 2] is the area of machine learning 

dealing with developing methods for automated discovery of 

quantitative laws, expressed in the form of equations, from 

collections of measured data. The state-of-the-art equation 

discovery paradigm, referred to as process-based modeling 

[3], integrates both theoretical and empirical approaches to 

modeling dynamics. The result is a process-based model 

(PBM) – an accurate and understandable representation of a 

dynamic systems.  

The process-based modeling paradigm has already been 

proven successful for modeling population dynamics in a 

number of aquatic ecosystems, such as: lake ecosystems [4, 

5, 6, and 7] and marine ecosystems [3]. However, these 

studies focus on obtaining explanatory models of the aquatic 

ecosystem, i.e., modeling the measured behavior of the 

system at hand, while modeling future behavior is not 

considered. In contrast, Whigham and Recknagel [8] discuss 

the predictive performance of process-based models in a lake 

ecosystem. However, either they assume a single model 

structure and focus on the task of parameter identification, or 

explore different model structures where the explanatory 

aspect of the model is completely ignored. The method 

proposed by Bridewell et.al [9] focuses of establishing robust 

interpretable process-based models, by tackling the over-

fitting problem. Even though this method provides estimates 

of model error on unseen data, these estimates are not related 

to the predictive performance of the model, i.e., its ability to 

predict future system behavior beyond the time-period 

captured in training data. Most recently, the study of 

Simidjievski et.al [10] focuses on the predictive performance 

of process-based models by using ensemble methods. 

However, while their proposed ensemble methods improve 

the predictive performance of the process-based models, the 

resulting ensemble model is not interpretable.  

In this paper we tackle the task of establishing an 

interpretable predictive model of a dynamic system. We focus 

on predicting the concentration of phytoplankton biomass in 

aquatic ecosystems.  Due to the high dynamicity and various 

seasonal exogenous influences [6, 7], most often process-

based models of such systems are learned using short time-

periods of observed data (1 year at most). Note however, this 

short time-periods of data are very sparse, i.e., consist of very 

few measured values, thus, most often the measurements are 

interpolated and daily samples are obtained from the 

interpolation. 

The initial experiments to this end, indicate that the 

predictive performance of such models is poor: While 

providing dense and accurate description of the observed 

behavior, they fail at predicting future system behavior. To 

address this limitation we propose learning more robust 

process-based models. We conjecture that by increasing the 

size of the learning data, more general process-base models 

will be obtained, thus yielding better predictive performance 

while maintaining their interpretability. 



The main contribution of this paper are the approaches to 

handling the learning data. The intuitive way of increasing the 

size of the learning data is by sequentially adding 

predeceasing contiguous datasets, thus creating one long 

time-period dataset, i.e., learning from sequential data (LSD). 

In contrast, when learning from parallel data (LPD), the 

model is learned from all the datasets simultaneously. Figure 

2 depicts the both approaches. The two approaches, in terms 

of learning process-based models, are described in more 

detail in Section 3. 

We test the utility of the two approaches on a series of 

tasks of modeling phytoplankton concentration in Lake 

Zürich. We use eight yearly datasets, using six for training, 

one for validation and one for testing the predictive 

performance of the obtained models. The aim of this paper is 

two-fold: besides validating the performance of the two 

approaches to handling data when learning predictive 

process-based models, we also test the quality of the training 

data. For that purpose, we perform additional set of 

experiments, similar to the previous. However, instead of 

using the interpolated data for learning the models – we use 

the original (sparse) measured values, thus examining the 

influence of the interpolation on the predictive performance 

of the process-based models. 

The next section provides more details of the task of 

process-based modeling, and introduces a recent contribution 

to the area of automated process-based modeling, i.e., the 

ProBMoT [4, 10] platform. Section 3 depicts the task of 

predictive process-based modeling of aquatic ecosystems.  

Section 4 describes the data used in the experiments, the 

design of the experiments, and the task specification. Section 

5 presents the results of the experiments. Finally, Section 6 

discusses the findings of this paper and suggests directions 

for future work. 

2 PROCESS-BASED MODELING AND PROBMOT 

The process-based modeling paradigm, addresses the task of 

learning process-based models of dynamic systems from two 

points of view: qualitative and quantitative. The first, 

provides a conceptual representation of the structure of the 

modeled system. Still, this depiction does not provide enough 

details that would allow for simulation of the system’s 

behavior. In contrast, the later, treats the process-based model 

as a set of differential and/or algebraic equations which 

allows for simulation. 

A process-based model consists of two basic types of 

elements: entities and processes. Entities correspond to the 

state of the system. They incorporate the variables and the 

constants related to the components of the modeled system. 

Each variable in the entity has its role. The role specifies 

whether the variable is exogenous or endogenous. Exogenous 

variables are explanatory/input variables, used as forcing 

terms of the dynamics of the observed system (and are not 

modeled within the system). Endogenous variables, are the 

response/output (system) variables. They represent the 

internal state of the system and are the ones being modeled. 

The entities are involved in complex interactions represented 

by the processes. The processes include specifications of the 

entities that interact, how those entities interact (equations), 

and additional sub-processes.  

From the qualitative perspective, the unity of entity and 

processes allows for conceptual interpretation of the modeled 

system. On the other hand, the entities and the processes 

provide further modeling details that allow for transformation 

from conceptual model to equations and therefore simulation 

of the system, i.e., providing the quantitative abilities of the 

process-based model. The equations define the interactions 

represented by the processes including the variables and 

constants from the entities involved. 

The process-based modeling paradigm allows for high-

level representation of domain-specific modeling knowledge. 

Such knowledge is embodied in a library of entity and process 

templates, which represent generalized modeling blueprints. 

The entity and process templates are further instantiated in 

specific entities and processes that correspond to the 

components and the interactions of the modeled system. 

These specific model components and interactions define the 

set of candidate model structures.  

The algorithm for inducing models employs knowledge-

based methods to enumerate all candidate structures. For each 

obtained structure, a parameter estimation is performed using 

the available training data. For this reason each structure is 

compiled into a system of differential and algebraic 

equations, which allows for the model to be simulated. In 

essence, this includes minimizing the discrepancy between 

the values of the simulated behavior obtained using the model 

and the observed behavior of the system.  

Recent implementations of the PBM approach include 

Lagrame2.0 [11], HIPM [12] and ProBMoT (Process-Based 

Modeling Tool) [4, 10], which is next described. 

The Process-Based Modeling Tool (ProBMoT), is a 

software platform for simulating, parameter fitting and 

Figure 1: Automated modeling with ProBMoT. 



inducing process-based models. Figure 1 illustrates the 

process of automated modeling with ProBMoT. The first 

input to ProBMoT is a conceptual model of the modeled 

system. The conceptual model specifies the expected logical 

structure of the modeled system in terms of entities and 

processes that we observe in the system at hand. The second 

input is the library of domain-specific modeling knowledge. 

By combining the conceptual model with the library of 

plausible modeling choices, candidate model structures are 

obtained. 

The model parameters for each structure are estimated 

using the available training data (third input to ProBMoT). 

The parameter optimization method is based on meta-

heuristic optimization framework jMetal 4.5 [13], in 

particular, ProBMoT implements the Differential Evolution 

(DE) [14] optimization algorithm. For the purpose of 

simulation, each model is transformed to a system of ODEs, 

which are solved using CVODE ODE solver from the 

SUNDIALS suite [15].  

Finally, the last input, is a separate validation dataset. In 

both cases (LSD and LPD), the model which has best 

performance on the validation dataset is the output of 

automated modeling process.  

3 PREDICTIVE PROCESS-BASED MODELING OF 

AQUATIC ECOSYSTEMS 

ProBMoT has been used extensively to model aquatic 

ecosystems [4, 5, 6]. Most of the case-studies, however, have 

focused on descriptive modeling – focusing on the 

content/interpretation of the learned models and not on their 

accuracy and predictive performance (with the exception of 

[10]). Predominately, models have been learned from short 

time-period (one-year) datasets, as considered long time-

periods worth of data resulted in models of poor fit. These 

models, however, had poor predictive power when applied to 

new (unseen) data. 

We use ProBMoT to learn predictive models of aquatic 

ecosystems from long time-period (multi-year) datasets. 

ProBMoT supports predictive modeling, as the obtained 

models can be applied/evaluated on a testing dataset. Taking 

the input/exogenous variable values from the test dataset, 

ProBMoT simulates the model at hand, and makes 

predictions for the values of the output/endogenous (system) 

variables.  Using the output specifications, the values of the 

output variables of the model are calculated and compared to 

the output variables from the test set, thus allowing for the 

predictive performance of the model to be assessed. 

Concerning the use of long time-period datasets, 

ProBMoT supports two different approaches, i.e., learning 

from sequential data (LSD) and learning from parallel data 

(LPD). The parameter optimization algorithm uses the 

available training data from the observed system to estimate 

the numerical values of the parameters.  When learning from 

sequential data, illustrated in Figure 2a, ProBMoT takes as an 

input one training dataset.  The training dataset is comprised 

of several contiguous short time-period datasets, thus the 

parameters are estimated over the whole time-span.  

One the other hand, when learning from parallel data, 

depicted in Figure 2b, ProBMoT takes as an input several 

short time-period training datasets. The parameter 

optimization algorithm handles the short time-periods in 

parallel, i.e., it estimates the optimal model parameters by 

minimizing the discrepancy between the simulated behavior 

and each individual training set.  

ProBMoT offers wide range of objective functions for 

measuring model performance such as sum of squared errors 

(SSE) between the simulated values and observed data, mean 

squared error (MSE), root mean squared error (RMSE), 

relative root mean squared error (ReRMSE), which is used in 

all experiments presented here for when learning the models 

and evaluating their performance. Relative root mean squared 

error (ReRMSE) [16] is defined as: 

𝑅𝑒𝑅𝑀𝑆𝐸(𝑚) =  √
∑ (𝑦𝑡 − �̂�𝑡)2𝑛

𝑡=0

∑ (�̅� − �̂�𝑡)2𝑛
𝑡=0

 , 

where 𝑛 denotes the number of measurements in the test data 

set, �̂�𝑡 and 𝑦𝑡  correspond to the measured and predicted value 

(obtained by simulating the model 𝑚) of the system variable 

𝑦 at time point 𝑡, and �̅� denotes the mean value of the system 

variable 𝑦 in the test data set. 

The data on the aquatic systems are very sparse (e.g. 

measure on a monthly basis). In the above mentioned studies, 

often they have been typically interpolated and sampled at a 

daily interval. Here, to assess the effect of the interpolation to 

the performance of the models, we also consider using only 

the original measured values when establishing the predictive 

process-based model. 

4 EXPERIMENTAL SETUP 

In this study, we apply the automated modeling tool 

ProBMoT to the task of predictive modeling of 

phytoplankton dynamics in Lake Zürich, Switzerland. We 

empirically evaluate the two different approaches for learning 

predictive models, LSD and LPD, on this task. We apply 

those two on interpolated data (sampled daily) and on the 

original (sparse) data.  

Figure 2: Two approaches to predictive modeling. a) 

Learning from sequential data (LSD), and b) Learning from 

parallel data (LPD). 

(1) 



4.1 Data & domain knowledge 

The datasets used for our experiments were obtained from the 

Water Supply Authority of Zürich. Lake Zürich is 

a lake in Switzerland, extending southeast of the city 

of Zürich. It has an average depth of 49 m, a volume of 3.9 

km3 and a surface area of 88.66 km2. The measurements 

consist of physical, chemical and biological data for the 

period from 1992 to 1999, taken once a month at 19 different 

sites, and averaged to the respective epilimnion (upper ten 

meters) and hypilimnion (bottom ten meters) depths.  

The data were interpolated with a cubic spline algorithm 

and daily samples were taken from the interpolation [17]. 

Both the original and interpolated data from the first six years 

were used for training the models (1992-1997), data from 

year 1998 for validation and data from 1999 to estimate the 

predictive performance of the learned models.    

The population dynamics model considered, consists of 

one endogenous/output (system) variable and multiple 

exogenous/input variables structured within a single ODE. 

The phytoplankton biomass is represented as a system 

variable, while the exogenous variables include: the 

concentration of zooplankton, dissolved inorganic nutrients 

(nitrogen, phosphorus, and silica) and two environmental 

influences of water temperature and global solar radiation 

(light).  

The library for process-based modeling of aquatic 

ecosystems used in our experiments, is the one presented by 

Atanasova [18]. Particularly, to reduce the computational 

complexity of our experiments, we use a simplified version 

of the library which results in total of 128 candidate models.  

4.2 ProBMoT parameter settings 

For the parameter calibration procedure we use Differential 

Evolution with rand/1/bin strategy, 1000 evaluations over a 

population space of 50 individuals. For simulating the ODEs 

we use the CVODE simulator with absolute and relative 

tolerances set to 10−3. For measuring the model performance 

we use objective function ReRMSE, described in Section 3. 

To further assess the significance of the differences in 

performance between the single dataset approach and 

multiple datasets approach we use Wilcoxon test for 

statistical significance [19] as presented by Demšar [20]. 

4.3 Experimental design 

In this paper we compare the performance of the two different 

approaches (LSD and LSP) to learning predictive process-

based models. For each approach we learn six process-based 

models using the available training data of six successive 

years (1992-1997). For both cases, we start with one short 

time-period training dataset (year 1997), and continue for five 

steps adding one preceding year to the training data set. At 

each step we learn the process-based models accordingly to 

the two approaches described in the previous section. 

First, we apply this two approaches on the interpolated 

data, or more precisely, daily samples of interpolated data. 

Second, we apply the two learning approaches to the original 

(sparse) training data. In all of the experiments the validation 

dataset (year 1998) and the test dataset (year 1999) remain the 

same.  

5 RESULTS 

Table 1 summarizes the performance comparison between 

models learned from sequential data (LSD) and models 

learned from parallel data (LPD), using both interpolated 

(left-hand side) and original (right-hand side) training data. 

Note that, in both cases, learning from sequential data, yields 

better predictive performance than learning from parallel 

data. The results of the Wilcoxon test (in Table 1 below) 

shows that using LSD is better than using LPD, however, the 

difference in performance is not substantial nor significant (p-

value=0.11). 

Table 1: Comparison of the predictive performances 

(ReRMSE on test data) of models learned from sequential 

data (LSD) and models learned from parallel data (LPD), 

from both interpolated and original samples. The numbers in 

bold indicate the best result for the given years. 

Train data 

(years) 

Interpolated Original 

LSD LPD LSD LPD 

‘97 

’96-’97 

’95-’97 

’94-’97 

’93-’97 

’92-’97 

1.398 

1.099 

1.006 

0.986 

1.075 

0.934 

1.398 

1.391 

1.044 

1.094 

1.109 

0.998 

1.074 

1.381 

0.984 
1.004 

1.105 

1.074 

1.074 

1.469 

1.084 

1.112 

1.085 

0.974 

Wilcoxon test 
LSD > LPD;  

p-value = 0.11 
LSD > LPD;  

p-value = 0.11 

 

Next, as shown in Table 1, using the original measured values 

when learning the models, did not improve their predictive 

performance. 

Finally, most importantly, from both experiments 

performed, we can conclude that using large amounts of 

training data (even interpolated) improves the overall 

predictive performance of the learned process-based models.  

Note however, that for one case (’93-97) the performance of 

the models does not improve. Further investigations are 

required to determine whether this phenomena is due to the 

quality of the data of that particular dataset (‘93), or to the 

dynamics of the system at that particular period significantly 

differing from the rest.  

6 CONCLUSION 

In this paper, we tackle the task of learning predictive 

interpretable process-based models of dynamic systems. In 

the process of establishing general and robust predictive 

models, we investigate learning from parallel data (LPD), in 

contrast to the state-of-the-art approach of learning from 

sequential data (LSD). We apply the both approaches to the 

task of modeling phytoplankton dynamics in Lake Zürich, 

using ProBMoT, a platform for simulating, parameter fitting 

and inducing process-based models. Additionally, besides 

validating the performance of the approaches to learning 



predictive process-based models, we also test the quality of 

the training data by learning models from the original 

measured values, in contrast to learning models from daily 

samples of interpolated data. 

The general conclusion of this paper is that using larger 

amounts of training data for learning process-based models 

yields improved predictive performance for tasks of modeling 

aquatic ecosystems. Both, Atanasova et al [5] and Taškova et 

al. [6] clearly state that one-year datasets produce models 

with poor predictive performance. We show that using data 

from a longer period, considered either consequently (LSD) 

or parallel (LPD) helps in deriving more general models, and 

therefore, better predictive models.  

Even though the statistical significance comparison shows 

that the LSD approach has better performance than the LPD 

approach, the difference in performance is neither substantial 

nor significant. Nevertheless, when learning from sequential 

data, due to the mater of simulation and parameter 

optimization, the available training data considered for 

learning process-based models should be contiguous. On the 

other hand, one useful feature of the LPD approach is that can 

handle missing data (e.g. intermediate period with no 

measurements) for establishing robust process-based models. 

Our empirical evaluation of learning from the original 

uninterpolated and sampled interpolated data, showed that the 

interpolation does not affect the performance of the learned 

process-based models. On the contrary, the models learned 

using the interpolated values yielded better performance than 

the ones learned using the original values. We conjecture that 

this is due to the sparsity of the original measured values (~ 

12 time-points per year), which is insufficient to capture the 

dynamics of such a system. Moreover, considering the 

relative performance between the two approaches, the LSD 

approach performed insignificantly better than the LPD 

approach 

    Taken all together, some new questions arise for further 

investigation. How strongly the quality of measurements 

affects the results? Would the results change significantly in 

the case of ideal measurements? Considering this, possible 

directions for further work are as follows. First, performing 

more experiments using multiple parallel sets of data from 

different periods and, data from various different lake 

ecosystems should be used. In order to achieve more 

controlled experiments, we consider testing the presented 

approaches on synthetic data, that is, data obtained by 

simulating a well-established model of an arbitrary aquatic 

ecosystem. Finally, we would like to extend our approach to 

different ecosystems and other domains. 
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