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Preferences play a key role in many applications of computer science and
modern information technology:
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Amazon files patent for
‘“anticipatory” shipping
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Amazon.com has filed for a patent for a shipping system that would anticipate what
customers buy to decrease shipping time.

Amazon says the shipping system works by analyzing customer data like, purchasing
history, product searches, wish lists and shopping cart contents, the Wall Street
Journal reports. According to the patent filing, items would be moved from
Amazon’s fulfillment center to a shipping hub close to the customer in anticipation
of an eventual purchase.
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“Early work in Al focused on the notion of a goal—an explicit target that must
be achieved—and this paradigm is still dominant in Al problem solving. But as

application domains become more complex and realistic, it is apparent that the
dichotomic notion of a goal, while adequate for certain puzzles, is too crude in
general. The problem is that in many contemporary application domains ... the
user has little knowledge about the set of possible solutions or feasible items,

and what she typically seeks is the best that’s out there. But since the user does
not know what is the best achievable plan or the best available document or
product, she typically cannot characterize it or its properties specifically. As a

result, she will end up either asking for an unachievable goal, getting no
solution in response, or asking for too little, obtaining a solution that can be
substantially improved.”

[Brafman & Domshlak, 2009]

... compared with the dichotomic notion of a goal, preference formalisms
significantly increase flexibility in knowledge representation and problem solving!



PREFERENCES IN Al -
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PREFERENCES IN ARTIFICIAL INTELLIGENCE RESEARCH:

preference representation (preference relations, CP nets, GAI
networks, logical representations, fuzzy constraints, ...)

reasoning with preferences (decision theory, constraint satisfaction,
non-monotonic reasoning, ...)

preference acquisition (preference elicitation, preference learning, ...)
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| Offizielle Homepage | Daniel Baier |

www.daniel-baier.com/

Willkommen auf der offiziellen Homepage von Fussballprofi Daniel Baier - TSV 1860
Miinchen.

Prof. Dr. Daniel Baier - Brandenburgische Technische Universitat ...
www.tu-cottbus.de/fakultaet3/de/.../team/.../prof-dr-daniel-baier.html

Vokler, Sascha; Krausche, Daniel; Baier, Daniel: Product Design Optimization Using
Ant Colony And Bee Algorithms: A Comparison, erscheint in: Studies in ...

Daniel Baier
www.weltfussball.de/spieler_profil/daniel-baier/
Daniel Baier - FC Augsburg, VfL Wolfsburg, VfL Wolfsburg II, TSV 1860 Minchen.

Daniel Baier - aktuelle Themen & Nachrichten - sueddeutsche.de
www.sueddeutsche.de/thema/Daniel_Baier

Aktuelle Nachrichten, Informationen und Bilder zum Thema Daniel Baier auf
sueddeutsche.de.

Daniel Baier | Facebook

de-de.facebook.com/daniel.baier.589

Tritt Facebook bei, um dich mit Daniel Baier und anderen Nutzern, die du kennst, zu
vernetzen. Facebook ermoglicht den Menschen das Teilen von Inhalten mit ...

FC Augsburg: Mein Tag in Bad Gégging: Daniel Baier
www.fcaugsburg.de/cms/website.php?id=/index/aktuell/news/...

2. Aug. 2012 — Daniel Baier berichtet heute, was flr die Profis auf dem Programm
stand. Hi FCA- Fans,. heute liegen wieder zwei intensive Trainingseinheiten ...

SYSTEMS
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Preferences are not necessarily
expressed explicitly, but can be
extracted implictly from people’s
behavior!
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Fostered by the availability of large amounts of data,
PREFERENCE LEARNING has recently emerged as a new
subfield of machine learning, dealing with the learning of
(predictive) preference models from observed, revealed or
automatically extracted preference information.




PLIS AN ACTIVE FIELD

Special Issue on
Representing,
Processing, and
Learning Preferences:
Theoretical and

Practical Challenges
(2011)

Machine

Learning

Special Issue on
Preference Learning
(2013).

INTELLIGENT

Preference

Learning

J. Firnkranz &

E. Hullermeier (eds.)

Preference Learning

Springer-Verlag 2011

SYSTEMS
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=  NIPS-01: New Methods for Preference Elicitation

= NIPS—-02: Beyond Classification and Regression: Learning Rankings, Preferences, Equality
Predicates, and Other Structures

=  KI-03: Preference Learning: Models, Methods, Applications

=  NIPS-04: Learning with Structured Outputs

=  NIPS-05: Workshop on Learning to Rank

= |JCAI-05: Advances in Preference Handling

=  SIGIR 07-10: Workshop on Learning to Rank for Information Retrieval

= ECML/PDKK 08-10: Workshop on Preference Learning

= NIPS-09: Workshop on Advances in Ranking

=  American Institute of Mathematics Workshop in Summer 2010: The Mathematics of Ranking
= NIPS-11: Workshop on Choice Models and Preference Learning

= EURO 2009-12: Special Track on Preference Learning

= ECAI-12: Workshop on Preference Learning: Problems and Applications in Al
= Dagstuhl Seminar on Preference Learning (2014)
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Structured Output Learning Classification (ordinal,
Prediction Monotone Models multilabel, ...)

Information
Retrieval

Learning with
weak supervision

Preference
Learning

Economics &
Decison Science

Recommender

Systems

Statistics Social Choice

Multiple Criteria
Decision Making

Graph theory

Optimization Operations
P Research
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— binary vs. graded (e.g., relevance judgements vs. ratings)

— absolute vs. relative (e.g., assessing single alternatives vs. comparing pairs)
— explicit vs. implicit (e.g., direct feedback vs. click-through data)

— structured vs. unstructured (e.g., ratings on a given scale vs. free text)

— single uservs. multiple users (e.g., document keywords vs. social tagging)

— single vs. multi-dimensional

A wide spectrum of learning problems!

14



COLLABORATIVE FILTERING i
INTELLIGENT

USERS

SYSTEMS

PRODUCTS

p1 | P2 | P3| .. [ P3| .. | Pss| P3| Ppo0
S Yebele Yedede

Yo W - . Y
? Yoy  ? ? ? ? YO ‘
U9S Prarans PAgK Qe
u99 D¢ LY

— absolute preferences

— graded ratings (on an ordinal scale)
— direct feedback

— multiple users

— no feature description of users or products

15
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OBJECT RANKING [Cohen et al., 1999]
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OBJECT RANKING [Cohen et al., 1999]
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PREDICTION (ranking a new set of objects)
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LABEL RANKING [E.H. et al., 2008]
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... mapping instances to TOTAL ORDERS over a fixed set of alternatives/labels:

Machine
(35, 1, 187, 325) |+— - Learning

1 i
instance © € X ranking of labels/alternatives

(e.g., features of a person) Y = {y1,y2, e ,yK}

19



LABEL RANKING: TRAINING DATA

i INTELLIGENT
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| X | X | X | preferences

TRAINING

X3
0.34 0 10
1.45 0 32
1.22 1 46
0.74 1 25
0.95 1 72
1.04 o) 33

174
277
421
165
273
158

A>~B,C>~D
B~C>A
B>~DA>-~D,C>~D,A>C

C-~A>-D,A>-B
B>~D,A>~D
D>~A>~B,C>~B,A>-C

... ho demand for full rankings!

Instances are
associated with
preferences
between labels
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PREDICTION A B C D
ooz 1w ae NN

new instance ranking ?
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PREDICTION A B C D
002 1 81 382 et

new instance 7(i) = position of i-th label
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PREDICTION
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LABEL RANKING: PREDICTION i
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PREDICTION
092 1 81 382 " labers.
L LOSS

GROUND TRUTH ‘\L

ooz 1 e ae [N

L) = Y [0 -G @ -7 () <] Loss

RANK CORRELATION
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L] SYSTEMS

query set of instances to
be ranked, each
described in terms of a
set of features.

(m, 26, 18, ...) predicted ranking

(e.g., ordering by score)

most likely positve @ @ : Q 6 @ © : ® ® ©® O mostlikely negative
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query set of instances to
be ranked, each
described in terms of a
set of features.

predicted ranking
(e.g., ordering by score)

v

most likely positive @ @ : O e ? o C‘) ? O O O mostlikely negative

ranking error

. L f(pi) < f(ny)
rank-loss = m Z 1/2 f(pi) = f(nj)
(pisnj) 0 f(pi) > f(ny)

26
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Training

| x1 | x2 | x3 | Xa | class_
1 034 0 10 174 class information

T ositive or negative

? 145 0 32 207 P ° )

T T e X x4—-1.4+1
S - 1 = — ( ’y> { 7 }

Tn  0.95 1 72 273

Just the same as classification?
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RANKING VERSUS CLASSIFICATION S
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A ranker (based on scores) can be turned into a classifier via thresholding:

positive «—— negative

o O
QQ.OQOQ’QOOO

flz) >t f(x) <t

A good classifier is not necessarily a good ranker:

) 4 ) 4

l y 2 classification but
® (A? 5 f ? f T T‘O 0 O O T O 10 ranking errors

- learning scoring functions that minimize rank loss |

28



RankSVM AND RELATED METHODS h T
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= Theideais to minimize a convex upper bound on the empirical ranking
error over a class of (kernelized) ranking functions:

. . 1 /
f Eargl}rélg{w.—]v Z Z L(f,a?,a?)—i—)\.R(f)}

xeP x'eN

\_Y_)

check for all positive/
negative pairs



RankSVM AND RELATED METHODS h T
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= Theideais to minimize a convex upper bound on the empirical ranking
error over a class of (kernelized) ranking functions:

convex upper bound on

[(f(z) < f(2'))

!

. . 1 /
f Eargl}rélg{w.—]v Z Z L(f,a?,a?)—i—)\.R(f)}

xeP x’'eN T
check for all positive/ regularizer

negative pairs



RankSVM AND RELATED METHODS h T
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= The bipartite RankSVM algorithm [Herbrich et al. 2000, Joachims 2002]:

regularizer
f* € arg min Z Z (1 —( —f(ml))++é' 1£1I%
Jerx |P| |N| xcePx’'eN T 2
T hinge loss

reproducing kernel
Hilbert space (RKHS) with
kernel K

- learning comes down to solving a QP problem (expensive)
—> issues with statistical consistency (e.g., Duchie et al. (2010))
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MULTI-ARMED BANDITS
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»pulling an arm* € > choosing an option

partial information online learning
sequential decision process

33



MULTI-ARMED BANDITS

h INTELLIGENT
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X1 ~Py

XQNPQ

X4NP4

,pulling an arm” €

® choosing an option

choice of an option/strategy (arm) yields a random reward

partial information online learning
sequential decision process
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MULTI-ARMED BANDITS

INTELLIGENT

SYSTEMS

Looking for ane
stop shop
for all your

Weh Snliniuns 2

> putting an advertisement

ulling an arm* €= .
»P & on a website

choice of an option/strategy (arm) yields a random reward

partial information online learning
sequential decision process
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MULTI-ARMED BANDITS

XlNP1

Xo ~ Py

Immediate reward:
Cumulative reward:

i INTELLIGENT

SYSTEMS

X3NP3

X4 ~Py

X5 ~ Ps

2.5
2.5
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MULTI-ARMED BANDITS

XlNP1

Xo ~ Py

Immediate reward:
Cumulative reward:

2.5
2.5

X3NP3

3.1
5.6

i INTELLIGENT

SYSTEMS

X4 ~Py

X5 ~ Ps
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MULTI-ARMED BANDITS

. INTELLIGENT

SYSTEMS

X1~ Py Xo ~ Py

X3 ~ Pj3

X4 ~Py

X5 ~ Ps

Immediate reward:
Cumulative reward:

2.5
2.5

3.1 1.
5.0 7.

.
3
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MULTI-ARMED BANDITS

X1 ~Py

Xo ~ Py

Immediate reward:
Cumulative reward:

2.5
2.5

X3 ~ Pj3

3.1 1.
5.0 7.

i INTELLIGENT

SYSTEMS

X4 ~Py

X5 ~ Ps

g
31

3.7
1.0

maximize cumulative reward = explore and exploit (tradeoff)

find best option = pure exploration

39



BOUND ON EXPECTED REGRET h NTELLIGENT
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— A policy is an algorithm that prescribes an arm to be played in each
round, based on the outcomes of the previous rounds.

— Denote by p; = E(X;) the expected reward of arm a; and

*
= Inax S
b=k

— Define the regret and cumulative regret, respectively, as

T
Tt:/JJ*_aji(t)a RT:ZTt )
t=1

where (%) is the index of the arm played in round ¢.

40
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Algorithm 1 e-greedy policy

Require: ¢ > 0

pull each arm once and initialize estimates /i;
t<+ 1

. while true do

—

k < arg maxi<;<K //J,z

t<+—t+1

2
3
4
5:  with probability 1 — ¢, play arm ax, and with probability € any other arm
6
7: end while

— For this policy, the cumulative regret is obviously O(T').

— Presumably optimal arm should be selected with an increasing
probability, depending on confidence in the arm, while presumably
suboptimal arms should be eschewed (suggesting sequence €(t) \, 0)

— Logarithmic regret for €(t) = min (1, 35;) with A the smallest
(positive) suboptimality p©* — u;.

41



THE UCB ALGORITHM h INTELLIGENT
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Algorithm 1 Upper Confidence Bound

1: foralll <:< K do
2:  [1; + oo {empirical mean of arm a;}
3:  t; < 0 {number of times played arm a;}
4: end for
5: t 1
6: while true do
7: k<« argmax; [i; + %ﬁgt {upper confidence bound from Chernoff-Hoeffding}
8:  play arm ag, update empirical mean jix, increment ty,
9: t<—t+1
10: end while

The UCB algorithm, introduced by Auer et al. (2002), implements the
optimism in the face of uncertainty principle.

42
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b

THE UCB ALGORITHM

arm?2 arm3 arm4 arm5 arm©6

arm 1
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INTELLIGENT
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b

THE UCB ALGORITHM

arm?2 arm3 arm4 arm5 arm©6

arm 1
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BOUND ON EXPECTED REGRET h NTELLIGENT
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Theorem: Assume rewards in [0, 1] (i.e., distributions Py, ..., Pk with
support in [0, 1]). The expected cumulative regret of UCB after any
number of rounds 1" is upper-bounded by

.S (loiT> ( ) ZA € O(KlogT) |

v g <p*

where A; = u*™ — p;.

45



PREFERENCE-BASED BANDITS h INTELLIGENT
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XlNP1 XQNPQ X3NP3 X4NP4 X5NP5

In many applications,

— the assignment of (numeric) rewards to single outcomes (and
therefore the assessment of individual options on an absolute scale)
is difficult,

— while the qualitative comparison between pairs of outcomes (arms/
options) is more feasible.

46
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RETRIEVAL RETRIEVAL RETRIEVAL RETRIEVAL RETRIEVAL
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION
1 2 3 4 5
X5 = X, Noisy preference can

be inferred from how
a user clicks through

an interleaved list of
documents [Radlinski
et al., 2008].

The result returned by the third retrieval
function, for a given query, is preferred to the
result returned by the first search engine.

47
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PLAYER PLAYER PLAYER PLAYER PLAYER
1 2 3 4 5
X3 = X4

Third player has beaten first player in a match.

48
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PREFERENCE-BASED BANDITS .

SYSTEMS

PLAYER PLAYER PLAYER PLAYER PLAYER
1 2 3 4 5
X3 = X4

— This setting has first been introduced as the dueling bandits problem (Yue
and Joachims, 2009).

— More generally, we shall speak of preference-based multi-armed bandits
(PB-MAB,).

49



FORMAL SETTING

— fixed set of arms (options) A = {a1,...,ax}

h INTELLIGENT

L] SYSTEMS

— action space of the learner (agent) = {(4,7) |1 <i<j < K}

(compairing pairs of arms a; and a;)

— feedback generated by an (unknown, time-stationary) probabilistic
process characterized by a preference relation

where

— typically, Q is reciprocal (¢;; =1 —¢;.)

d1.1
qd2.1

L dK,1

qd1,2
q2.2

dK,2

d1,K
q2. K

dK,K

q;,; = P (az- — aj)

50



THE PREFERENCE RELATION h NTELLIGENT
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— We say arm a; beats arm a; if ¢; ; > 1/2.

— The degrees of distinguishability

N | —

Aij=¢qij—
quantify the hardness of a PB-MAB task.

— Assumptions on properties of Q are crucial for learning.

— Coherence: The pairwise comparisons need to provide hints (even if
“noisy” ones) on the target.

51
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TIME HORIZON i
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— Process iterates in discrete steps, either through a finite
(T=[T]={1,...,T}) or infinite (T = N) time horizon.

finite time horizon,

1
|
—I/ ! cumulative regret
>
|
T

finite time horizon,
simple regret

~ - o---
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TIME HORIZON i
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— Process iterates in discrete steps, either through a finite
(T=[T]={1,...,T}) or infinite (T = N) time horizon.

infinite time horizon,
/ S cumulative regret

0
: i i pure exploration,
I I ‘ termination decided
| | .

| I I I S by algorithm

| | | |

0 T=5
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PROBABILITY ESTIMATION h T
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— In each iteration t € T, the learner selects (i(t),j(t)) and observes

{ Qj(¢t) >~ 10 with probability qi(t),5(t)
@j(¢t) >~ Qj(¢t) with probability qj(t),i(t)

— Probability g; ; can be estimated by the proportion of wins of a; against
a; up to iteration ¢:

t t

Gt — Wij Wiy
(2% t o t t
Nij Wiy T Wy,

— As samples are i.i.d., this is a plausible estimate; yet, it might be biased,

since n} ; depends on the choice of the learner and hence on the data

t

(n; ; is a random quantity).
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PROBABILITY ESTIMATION h T
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— A high probability confidence interval of the form

t

~t ~t t
[qi,j —Cijs Qi T Ci,j}

can be obtained based on concentration inequalities like Hoeffding:

Let X1,...,X,, bei.i.d. random variables with values in [0, 1],
p=EX;)and X = (X; +...+ X,,)/m. Then, for any € > 0,

P(|X —pl>€) <2exp(—2¢"m) .

Thus,

<X+ \/log 1/9)

with probability at least 1 —

55



PROBABILITY ESTIMATION h T
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— A high probability confidence interval of the form
{@fj —Cigs Qg T Cﬁ,j}
can be obtained based on concentration inequalities like Hoeffding.
— Option a; beats a; with high probability if
Z]}fj—cﬁ’j >1/2 . —f o]

o
—_

— Option a; beats a; with high probability if

]

gl +cki<1/2.
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PAIRWISE SAMPLING

aj ao as a4
ax fof] o] =]
0 1 O 1 O 1
a2 | j—t—o{ fre—]  fome}—
0 1 0 1 O 1
Q3 | | | || femet—
0 110 1 0 1

o
—_
(@)
[u—
o
—

uncertainty about pairwise
preferences

translates

into

i INTELLIGENT
SYSTEMS

uncertainty
about ranking
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SAMPLE COMPLEXITY h INTELLIGENT
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— In each iteration of the pure exploration setting, the learner either
selects a pair of arms to be compared or terminates and return its
recommendation.

— A recommendation could be

o a single best arm,
o a complete ranking of all arms,
o a probability distribution over all rankings,

o the subset of top-k arms,

58



SAMPLE COMPLEXITY h INTELLIGENT
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— The sample complexity S of the learner is the number of
comparisons prior to termination.

— A bound on this complexity is of the form
S < B(Q,K,9) ,

with 1 — 0 a lower bound on the probability that the learner
terminates and returns the correct solution.

— With probability d, the learner may either guess incorrectly or not
terminate. Therefore, it is difficult so say anything about the
expectation of the complexity.
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number of pairwise
comparisons taken by A
the algorithm

SAMPLE
SPACE

>

0 COMPLEXITY

number of pairwise
SAMPLE comparisons takenby A
SPACE the algorithm - BOUND
/28RN
4 \
{4 \
\
U \\
\
\
\

\\
>

0 COMPLEXITY
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— Gaining efficiency at the cost of optimality!

— An algorithm is called (¢, 0)-PAC preference-based MAB algorithm
with a sample complexity

B(Q, K,¢,9)

if it terminates and returns an e-optimal recommendation with

probability at least 1 — 9, and the number of comparisons is at most
B(Q, K,¢,9).

— Depending on the type of recommendation, the definition of
e-optimality is not necessarily straightforward.
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— Suboptimality of decision making is typically measured in terms of
expected regret (cost of ignorance).

— If options have an inherent (expected) value u;, and actions

correspond to selecting single options, a natural notion of (expected)
regret is
%
ry = — ; = Inax i s .
X Hi(t) JelK] 2% Hoi(t)

— The cumulative regret at time 7" € T is
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— How to penalize the selection of pair of options in the qualitative
setting?

— Yue and Joachims (2009) proposed
ri = f(Aie iy Div i)
with f(a,b) = max(a,b), f(a,b) = min(a,b), f(a,b) = (a + b)/2.
— The regret is 0 if the best arm is compared to itself.

— Note that this definition presupposes the existence of a unique best
arm a;« (in the form of a Condorcet winner).
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— The regret accumulated by an algorithm is a random variable that
depends on the stochastic nature of the data-generating process
(and maybe randomized decisions of the learner).

— An expected regret bound is of the form
E[R"] < B(Q,K,T) .
— A high-probability regret bound is of the form
P(RT < B(Q,K,T,5)) >1-4 .

We say the regret of the learner is O(B(Q, K,T,9)) with high
probability.
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COMPARISON OF THE SETTINGS
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pure exploration explore/exploit expore/exploit
(finite time horizon) | (infinite horizon)

actions pairwise comparison
or termination

recommendation top-1, top-k,
ranking, ...

cost of action unit cost

evaluation sample complexity

type of analysis bounds, PAC bounds

in the case of
approximation

pairwise comparison

top-1

suboptimality of
selected pair (regret)

simple regret or
cumulative regret

bounds on regret,
expectation or high
probability

pairwise comparison

suboptimality of
selected pair (regret)

cumulative regret

bounds on expected
regret, high
probability bounds
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— Explore-then-exploit algorithms first try to identify the best arm
with high probability, and then fully commit to this arm for the rest
of the time horizon T (which is fixed and known beforehand).

0 explore exploit T

What is a good tradeoff, i.e., how much time should be devoted to exploration?
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— Explore-then-exploit algorithms first try to identify the best arm
with high probability, and then fully commit to this arm for the rest
of the time horizon T' (which is fixed and known beforehand).

— Suppose exploratory algorithm A identifes a;« with probability
>1—9. Then, with § = 1/T, the expected regret of an
explore-then-exploit algorithm is

E[R'] < (1-1/T)E[R}] + (1/T) O(T) = O (E[R4] + 1)

— Since the per round regret is at most one, the sample complexity
of A upper-bounds the expected regret.

— Explore-then-exploit algorithms somehow blur the distinction
between the two settings.
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Regularity assumptions on Q [Yue et al., 2012]:

— Total order over arms: there exists a total order > on A, such that
a; > a; implies A; ; > 0.

— Strong stochastic transitivity: for any triplet of arms such that
a; > a; > ay, the pairwise probabilities satisfy

Ak > max (A, Aj) -

— Stochastic triangle inequality: for any triplet of arms such that
a; > a; > ai, the pairwise probabilities satisfy

ANir <A +AjE.
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— Yue and Joachims (2009) proposed the first explore-then-exploit algorithm
(with time horizon T given in advance).

— Exploration consists of a sequential elimination strategy called Interleaved
Filtering (IF), which identifies the best arm with probability at least 1 — J.

— The currently selected arm a; is compared to the rest of the active arms.
If a; beats a; (¢; j + ci.j < 1/2), then a; is eliminated and a; selected.

— Pruning: if ¢; ; — ¢; ; > 1/2 for an arm a;, then a; is eliminated.

— Assuming the horizon T' to be finite and known in advance, IF incurs an
expected regret

K
E[RT,.] = log T
Bir O<minj;éz'* Ny o )
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Algorithm 1 Interleaved Filter (T, A)
1: 6+ 1/(TK?)

choose a € A at random
W+ W\ {a}
Va € W : maintain estimates of ¢(a,a) and corresponding 1 — § confidence intervals
while W # () do

for a €¢ W do

compare a and a, update estimates
end for

© O XN kR O

eliminate all a € W empirically beaten by a

=
e

if 3a’ € W : a/ empirically beats a then
eliminate from W all a such that ¢(a,a) > 1/2
a<a, W« W\ {d}
Va € W : reset estimates and confidence intervals
14: end if
15: end while
16: return a and total number of comparisons made

e
e
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a
a, --
a, 0.4
az 0.4

a, 04 0.1 0.4 -

violation of strong stochastic transitivity
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— Yue and Joachims (2011) only require relaxed stochastic transitivity:
There is a v > 1 such that, for any triplet of arms such that a;« > a; > a;
with respect to the total order >,

’YAi*,j Z max {Ai*,iaAi,j} .

— Beat-The-Mean (BTM) is an elimination strategy resembling IF.
However, it follows a different strategy for pairing arms.

— Like for IF, the time horizon is fixed in advance (more correctly, one may
denote algorithms IF and BTM~).
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— BTM maintains a set of active arms. It always selects an arm with the
fewest comparisons so far and pairs it with a randomly chosen
competitor.

— Based on the pairwise comparisons, a score b; is assigned to each a;,
which is an empirical estimate of the probability that a; is winning in a
“random” pairwise comparison.

— The idea is that comparing an arm a; to the “mean” arm, which beats
half of the arms, is equivalent to comparing a; to a random arm.

— A confidence interval for each of the b; scores is derived.

— An arm is eliminated from the set of active arms as soon as there is
another arm with a significantly higher score.

— The process ends when there is only a single active arm left (or the
number of comparisons is large enough to guarantee e-approximation).
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BEAT THE MEAN

d, a, CES
a, -- 0.6 0.6
a, 0.4 - 0.8

a, 0.4 0.1 0.4

0.6
0.9
0.6

0.6
0.7
0.4
0.3

h

INTELLIGENT
SYSTEMS

The best arm does not necessarily have the best expected performance
(highest probability of winning), though it cannot be the worst either.
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a, a, a, a,
a, —- 0.6 0.6 0.6 0.6
a, 0.4 —- 0.8 0.9 0.7
a, 0.4 0.2 == 0.6 0.4
ag 04 01 04 == 63
a a; a3
a, —- 0.6 0.6 0.6
a, 0.4 —- 0.8 0.6
a3 04 62 == 63
a a
a, -- 0.6 0.6
a3 04 — 04—
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— Online setting ( “explote-then-exploit”): For a finite time horizon, the
regret accumulated by BTM is

7
(9( LS logT)

Nz« A j

with high probability.

— PAC setting: Moreover, BTM is an (¢, 9)-PAC preference-based
learner, the sample complexity of which is

6
o (7 2Klog K’ylog(K/fS))
€ de

for large enough N (maximum number of comparisons).
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— Zoghi et al. (2014) proposed Relative UCB, which only
assumes the existence of a Condorcet winner.

el

— Like the well-known UCB, this algorithm is based on the “optimism in
the face of uncertainty” principle: the arms to be compared next are
selected based on the upper boundaries of their confidence intervals

[qz',j — Ci,jy Qij T Ci,j]

— In an iteration, RUCB selects a. randomly from the set of potential
Condorcet winners (q..; + c.; > 1/2 for all 7).

— Finally, regular UCB is performed relative to a., namely, a. is compared
to the arm a4 supposed to yield the smallest regret:

d=argmax quq+ Cr.d
{#c ’
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Algorithm 1 RUCB
Require: a > 1/2, T € NU {0}
1: forall 1 <17,5 < K do

2: w;j < 0 {number of wins of a; over a;}
3: end for
4: fort=1,...,7 do
5 forall 1 <:+# 35 <K do
6: Ui, j # + ./ % (frequentist estimate + optimism bonus)
7:  end for
8 forall1 <7< K do
0: WUj,5 < 1/2
10:  end for
11:  pick any c such that u.; > 1/2 for all i, or otherwise a ¢ at random
12:  d < argmax; Uj,c
13:  compare a. and a4 and update w4 or wq,c
14: end for

Wi, j

15: return a. € argmax#{ﬂ P > %}
2,7 2,7
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RUCB

aj ao as a4
a | —+—4 == == =
0 1 O 1 O 1 O 1
a2 | jm—t— —— -] |——
0 1 O 1 O 1 O 1
az | e |—— —— |——]
0 1 O 1 O 1 O 1
g | fmd—o |—= |—f—{ ——
0 1 O 1 O 1 O 1
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RUCB

ai as as ay
ap | —— == = =
0 1 O 1 O 1 O 1
@2 | jit— F—— P =i
0 1 O 1 O 1 O 1
az | F=f— =y 1 -
0 1 O 1 O 1 O 1
as | pei+— = -] ——
0 1 O 1 O 1 O 1

b
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as

Qg

first arm will be
compared to itself
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— Horizonless regret bounds are provided, both for the expected and
high probability case. Unlike the bounds for IF and BTM, they are valid

for each time step (no need to specify/guess the exploration horizon T°
beforehand).

— Both bounds are of order O(K logT).

— The constants again depend on the A; ; values, however, they are not
directly comparable to those of IF and BTM.

— Empirically, RUCB seems to outperform both IF and BTM.
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Theorem (Zoghi et al., 2014): Suppose a; to be the best arm (Condorcet
winner). Given § > 0 and a > 1/2, define

 ((da—1)K2\ 7= 4o
Ce) = ( (20— 1)5 and Dy.; = min(AZ, A2)

forall 1 <i# j < K, where A; =1/2 — g; 1. Moreover, let D, ; = 0 for all 4.
Then, for any pair (¢,j) # (1,1), the number of comparisons V; ;(t) between q;
and a; taken by RUCB up to time ¢ satisfies

P(Vt: N; ;(t) < max {C(9), ”logt}) >1—0.
Moreover, the following high probability bound holds for the regret:

P(Vt . Rt S C((S)A* -+ ZDi’in>j 10gt) >1— 5,

1>]

Ai+A,
where A* = max; A; and A; ; = JQF o
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Lemma: Suppose a; to be the best arm (Condorcet winner), i.e., g1 ; > 1/2 for

all y > 1. For any a > 0, let

w; (1) alogt
Ui’j = +
(O (t) + 'wj,i(t) (I (t) + wj,i(t)

and [; j(t) =1 —u,;;(t). Moreover, for any § > 0, let

C(5) = ((‘(l;)za—_li i{g?) TomT

Then,

P(w > C(6),4,7 ¢ qi; € [li,j(t),ui’j(t)]) >1-6 .
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7,5 (1) Tij(n+1)

Confidence intervals [l; (%), u; j(t)] grow logarithmically unless a;
and a; are compared. In that case, the interval shrinks and moves
toward the ground truth g; ;.
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— The first part of the theorem is obtained by showing that, for (7, 7) # (1,1),
N; ;(t) > max{C(6), D; jlogt} leads to a contradition (w.h.p).

— This is done by showing that u; ;(t) — ; j(t) must be “small” and “large”
at the same time, which, together with the correctness of the confidence
intervals (due to ¢ > C(«) and the lemma), is not possible.

— The width of the interval [u;_j(t),l; ;(t)] must be small because of the
comparatively large number of comparisons N; ;(t).

— Moreover, for (i, j) to be picked by RUCB for comparison, both u; ; and
u;; must be large, and hence [; ; =1 — u;; small:
u; ; > 1/2, since otherwise ¢ would not be picked as index c.
uji > U1 > q1,i, since otherwise 57 would not be picked as index d.

— The second part of the theorem is shown by assuming the largest regret,

A*, to occur in the first C'(§) steps and, moreover, adding the regret for
D; jlogt comparisons of a; and a;.
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Suppose each arm a; is associated with a latent utility p; = u(a;), and the
pairwise probabilities g; ; are connected to these utilities via a link function ¢
such that

gi; = ¢(ki, 1j)

An example is the Bradley-Terry model, which is well-known in discrete

choice theory: I

i + 1

Gij = Plai - a;) =

Ailon et al. (2014) make use of a linear link function (assuming utilities in
[0,1]):
1+ p1i —

2

qij = Pla; > a;) =
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Note that properties such as total order, stochastic transitivity,
Condorcet-winner, etc. will normally be implied.

Utilities u; (or noisy versions thereof) are not observed directly, however, the
observed preferences do at least provide hints at these utilities.

Since this setting is somwhat in-between preference-based and the standard
(cardinal) MAB problems, an obvious idea is to somehow reduce the former

to the latter.

This idea has been realized by Ailon et al. (2014), both for the case of a finite
and an infinite number of bandits.
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Algorithm 1 MultiSBM
1: for all a € A do
2: S, <—new SBM over A {initialize singleton bandit machines}
reset(S,)

3

4: end for

5: 1o <—arbitrary element of A

6: t <+ 1

7: while true do

8 Tt < Yt—1

9 y: < advance(S,,) {arm to be played by SBM S, }

10: play (z¢, y+)
11: if x; > y; then

12: pref <0
13:  else

14: pref < 1
15:  end if

16:  feedback(S.,,pref)
17: t+—t+1
18: end while

94



MultiSBM h INTELLIGENT

L] SYSTEMS

MultiSBM runs K singleton bandit machines in parallel, one for each arm.

The (unobserved) regret is defined as follows:

B w(e) + p(ye)
e =g ule) =7

The feedback for the SBM is

0 ifZEt>'yt
1 ifthZEt

pref = {
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MultiSBM
right arm

ai a as a4
ai 0 1/6 2/6 3/6
E az 1/6 2/6 3/6 4/6

©

e
I as 2/6 3/6 4/6 S5/6
ay 3/6 4/6 S5/6 1

p(re)+p(ye)

regret ry = 1 —

2

h INTELLIGENT
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2/3

1/3
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right arm
ay a2 as aq p(a;)
ai 1/2 2/6 1/6 0] 1
E a 4/6 1/2 2/6 1/6 2/3
©
f
o a3 5/6 i 1/2 2/6 1/3
as 1 5/6 4/6 1/2 0

P(pref =1) =P(y: > )
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MultiSBM
right arm

a1 a2 as a4
ai 1/2 2/6 1/6 0
E a2 4/6 1/2 2/6 1/6

©

&
© as S/6 4/6 1/2 2/6
a4 1 S5/6 4/6 1/2

P(pref =1) =P(b; > a;)

h INTELLIGENT
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2/3

1/3
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The expected cumulative regret of MultiSBM can be shown to be
asymptotically competitive to that of a single SBM (namely the one
corresponding to the best arm), provided this bound holds for the SBM itself

and, moreover, the latter obeys a certain robustness property.

(Inverse polynomial tail distribution for the regret: P(7T, > s) < 2/a(s/2)™¢,
where T, is the number of times a suboptimal arm x is played).

Proof is based on showing a “positive feedback loop™:

— If the expected regret incurred by the right arm y; is low, then there is a
higher chance that =* will be played as the left arm at the next time

step.

— Conversely, if any fixed arm (in particular x*) is played very often as the
left arm, then the expected regret incurred by the right arm decreases

quickly.
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Algorithm 1 Sparring
1: S, Sk <—new SBMs over A
2: reset(SL), reset(Sgr)
3:t+1
4: while true do

5.  x; < advance(Sy)

6:  y¢ < advance(Sgr)

7. play (@, yt)

8: if v > y, then

9: feedback(Sy,, 1), feedback(Sg, 0)
10:  else

11: feedback(Sy,0), feedback(Sgr, 1)
12:  end if

13: t<—t+1
14: end while

Sparring (Ailon et al., 2014) performs very well in practice but is difficult to analyze
formally (due to non-stochastic nature of feedback).
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— We might not only be interested in the single best (top-1) alternative,
but perhaps in a complete ranking of arms, or at least larger parts of it
(for example, a top-k ranking).

— In that case, it appears natural to refer to statistical models of rank
data, which have been studied in statistics (and applied fields such as
voting theory, social choice, etc.) for a long time.



STATISTICAL MODELS

Pairwise marginals of a permutation-valued random variable:

achine
earning

INFORMATION
SCIENCES

achine
earning

T T

Computational

Computational
Statistics
e
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PROBABILITIES ON RANKINGS

A=B>=C
A-=C>=B
B>=A>C
B-C>A
C-A>B
C=B>A

Need a parameterized family of

distributions on the permutation space!

b1
p2
p3
P4
ps
Ps

A-=B>C>=D
A-B>=D3»C
A-C=B>D
A-C>=D>B
A=-D>=B>C
A-D>=C>B
B>=A>C>=D
B>~A>=Dx>=C

C-B>=D=A
C-D>=A=B
C=D>=B=A
D-A>B>C
D-A>=C>B
D-=B>A>C
D-B>C>A
D-C>=A>B
D-C>=B>A

b1
p2
ps
2
ps
Ps
b7
ps

P16
bi7
b1s
P19
b20
Pp21
Db22
b23
P24
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item A B C D
3 4 1

«—> D-A>~C>=B
rank 2

— Rankings can be represented by permutations 7 : {1,..., K} — {1,...,K}.
— 7(2) is the rank of the i-th item.

— The set of all permutations is the symmetric group of order K, denoted Sk
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. is a distance-based probability distribution P : S — [0, 1],
which belongs to the exponential family:

1‘
eXp — OA(m 7r0))

P(m|mg,0)

normalization

¢(mo,0)

constant

where A is the Kendall distance on permutations (number of
item pairs differently ordered):

A(m,mo) = #{1 <i<j < K|(m(i)—7(j))(mo(i)—mo(5)) <0}
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reference ranking
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0.05

reference ranking

0.02

0.01

\ 0.02
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Observations are not complete rankings such as
m:B>~C>~A>D
but pairwise preferences like
o:D>C
or incomplete rankings like

c: B>=D=A".
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Given a probability P(-) on Sk, the probability of an incomplete ranking

o is given by the probability of its linear extensions:

P(o) =P(E(0))= » P(n)

neE (o)

|
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vlvAvAUEUAUEONGONGOEG NG NG A v veIveIveEIveES-JI -5 i

NMOWP>>O00WWOP>>OO0ONNOIZ>IZ>UOOMNMNT®

T>O>ONOWI®mP>O>OTTO>PO>0NNOTOTTNO

S>> WNP>®W>OWO>NO>O0ON0TTNOTWWONU0O

0.14
0.00
0.08
0.00
0.10
0.00
0.00
0.05
0.00
0.00
0.15
0.00
0.00
0.03
0.00
0.16
0.00
0.00
0.00
0.02
0.00
0.17
0.00
0.09

P(A>C) =
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A B C D 014
‘A B D C 000
A C B D 008
‘A C D B 000
A D B C 010
A D C B 000
B A C D 000 P(A - C) =0.54
B A D C 005
B C A D 000
B C D A 000
B D A C 015
B D C A 000
C A B D 000
C A D B 003
C B A D 000
C B D A 016
C D A B 000
C DB A 000
D A B C 000
D A C B 002
D B A C 000

0.09 112
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In the case of Mallows, the induced pairwise marginals are

gi,j =P(a;i=a;) = Z P (7| o, 0)
m: (i) <m(j)

1

— xp (— 0A
Qb(ﬂ'o, (9) N W@;ﬂ(j) exXp ( (7‘-7 770))
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Important observation: With 7y the identity, the matrix Q = (¢; ;) has a
Toeplitz structure:

with R(k,0) = k/(1 — exp(—kf)).

- n BB
o\ » u
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Important observation: With 7 the identity, the matrix Q = (g; ;) has a
Toeplitz structure:

with h(k,0) = k/(1 — exp(—kf)).
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qii—2 4i,i—1 qi.i qii+1 4i,i+2

M

0 0.5 1

— Compared to weaker model assumptions, Mallows induces a highly
regular structure on the pairwise marginals.

— These are coherent with the target ranking in the sense that
mo(2) < mo(j) implies g; ; > 1/2 and 7o (i) < mo(j) < mo(k) implies
¢i.; < qix- (Yet, stochastic triangle inequality does not hold.)

— Most importantly, Mallows assures a minimum separation p between
neighbored options, which depends on 6.

— This allows for establishing a connection to (noisy) sorting.

116



PREFERENCE-BASED RANK ELICITATION h NTELLIGENT

L] SYSTEMS

— Busa-Fekete et al. (2014) propose a sampling strategy called
MallowsMPR, which is based on the merge sort algorithm for
selecting the arms to be compared.

— However, two arms a; and a; are not only compared once but until
1/2¢ [@ij = cijr @i+ i) -

— Theorem: For any 0 < 0 < 1, MallowsMPR outputs the reference
ranking 7o with probability at least 1 — 9, and the number of pairwise
comparisons taken by the algorithm is

O (KIO%Q K
p

K log, K)

1
og 5p

where p = % ¢ = exp(—0).
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Algorithm  MallowsMPR(9)

1: for: =1 to K do
Ti 1
ri <0
end for
(r,7") + MMRec(r,7’,6,1, K)
for: =1 to K do
Ty <1
end for
return r

OO AN

Algorithm  MMRec(r, 7/, 4,1, j)
1- if i < j then
2. k<« [(i+7)/2]
3:  (r,r") « MMRec(r,r',6,i,k — 1)
4 (r,7") < MMRec(r,7’,0,k, j)
5 for / =1 to 5 do
6: To < Ty
7
8

end for
- end if
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Algorithm  MallowsMerge(r, ', 9,1, j, k)
1: £+, 0 <k

2: for g =1 to j do

3 if £ <k and ¢ <j then

4: repeat

5: observe 0 = I(as > as)

6 De,er < Deor + 0, g g0 = Ngpr + 1
. Coo (ﬁlog <4n£7§CK)) 1/2
8 until 1/2 Q [ﬁg”gl + ng/]

9: if 1/2 < Peer — co e then

10: rg 1o, L L+1

11: else

12: Ty T, U — 0 +1

13: end if

14: else

15: if £ < k then

16: 7’:1(—7”@,6(—6—*-1

17: else

18: rg 1o, U0 +1

19: end if

20: end if

21: end for

22: return 7
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EMPIRICAL VALIDATION

—_
o

a0

g

Z

210"

z

'z

Q‘ .

E LS ——MallowsMP1

§1O L B%MOWS ]:

Z. ]ﬁﬁﬁﬁﬁ]ﬁﬁﬁﬁ]]ﬁﬁﬁﬁ]ﬁﬁﬁﬁﬁ]ﬁﬁ"ﬁ]..ﬁﬁ]]ﬁﬁﬁﬁ]ﬁﬁﬁﬁﬁ]ﬁﬁﬁﬁﬁ]—e—IF(lOO)
B N D IF(1000)
.................................................. —e—1IF(5000)

102 ——1IF(10000)

0 0.2 0.4 0.6 0.8 1

¢ ={0.05,0.1,0.3,0.5,0.7.0.8}

h

Sample complexity for K=10, § = 0.05 and different values of ¢.
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— For the problem of finding the best arm, Busa-Fekete et al. (2014)
devise an algorithm that is similar to the one used for finding the largest
element in an array.

— Again, two arms a; and a; are compared until significance is achieved.

— Theorem: MallowsMPI finds the most preferred arm with probability at
least 1 — 0 for a sample complexity that is of the form

K. K
oo —
? <p2 o 5p> ’

where p = %
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EMPIRICAL VALIDATION

In general, the approach performs
quite well compared to baselines.

However, it may fail if the
underlying data is not enough
,Mallowsian“ ...

Bayern Minchen

Schalke 04

Hannover 96

Dortmund

Leverkusen

VFB Stuttgart

INTELLIGENT

Werder Bremen

SYSTEMS
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interleaved filter

axiomatics beat-the-mean

: RUCB
consistent
preferences gradient descent

utility functions

reduction
preference-based
(stochastic) MAB statistical models Mallows

voting bandits

possibly
inonsistent

preference-based
racing

preferences

PAC rank
elicitation
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COHERENCE

GROUND
TRUTH

>

Q
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.1 412 --- (1K
42,1 422 ... ({2 K
L dKk,1 4K2 .- 4K K

... the preference relation is derived
from, or at least strongly restricted
by the target (ranking or best arm)!
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Now, take any preference relation

as a point of departure ... aq
11 Q12 - QK »
921 QG22 ... Q2K CONNECTION ? 4
Q=| . | | <€ > ]
as
| QK,l QK,Q .. qK,K ] \ll
ag | TARGET
RANKING ?

The target can then be defined by means of a ranking procedure!

125



RANKING PROCEDURES

Copeland (number of wins, binary voting):

d,
0.4
0.4
0.4

a,
0.6
0.2
0.1

a, = a,= a; = a,

ds
0.6
0.8

0.4

0.6
0.9
0.6

O = N W

h

INTELLIGENT
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RANKING PROCEDURES

Borda (weighted voting, sum of expectations):

d,
0.4
0.4
0.4

a, a;
0.6 0.6
-- 0.8
0.2 --
0.1 0.4

a,=a, = a; = a,

Ay
0.6
0.9
0.6

1.8
2.1
1.2
0.9

h

INTELLIGENT
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Easy reduction for the case of Borda:

a, a,
a, -- 0.6
a, 0.4 ==
az 0.4 0.2
a, 0.4 0.1

CES
0.6
0.8

0.4

0.6
0.9
0.6

1.8
2.1
1.2
0.9

h

Choosing an arm = pairing it with a randomly chosen alternative:

dg d,
reward O 0.4 0.3
reward 1 0.6 0.7

d3
0.6
0.4

0.7
0.3

INTELLIGENT
SYSTEMS
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— Copeland’s ranking (CO) : a; <“© q; if and only if
di = #{k € [K][1/2 < qix} < #{k € [K]|1/2 < qir} = d;

Problem: Minimal changes of ¢; ; (around 1/2) may strongly influence <“©.

— The e-insensitive CO relation: q; <Co

¢ a; if and only if
d; +s; < dj,
with
di = #{k : /24 € < qup,i # k),
st= ko [1/2— gl <e i £k}
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i

S c
£ ) a0
2 & -
: c bt
= e g & S & 2 s
c 2 2 > ) 5 ) 2
+ ()] (qv] o
o o) > o S v & 5
0 a 9 > A = > T
Bayern Miinchen 0.7 0.55 0.575 0.75 0.55 0.775 0.7
Dortmund 0.3 0.55 0.475 0.425 0.525 0.6 0.675
Leverkusen 0.45 0.45 0.425 0.55 0.55 0.65 0.6
VFB Stuttgart 0.425 0.525 0.575 0.4 0.6 0.5 0.65
Schalke 04 0.25 0.575 0.45 0.6 0.45 0.65 0.675
Werder Bremen 0.45 0.475 0.45 0.5 0.35 0.5 0.675
VFB Wolfsburg 0.225 0.4 0.35 0.5 0.35 0.45 0.675

Hannover 96 0.3 0.325 04 0.35 0.325 0.35 0.325

German Bundesliga data



RANKING PROCEDURES

Bayern Minchen
Dortmund
Leverkusen

VFB Stuttgart
Schalke 04
Werder Bremen
VFB Wolfsburg

Hannover 96

€ =0.02

[7,7]
[4,4]
[4,4]
[4,5]
[4,4]
3,3]
[1,2]
[0,0]

€e=0.1

[4,7]
[1,6]
[1,7]
[1,7]
[2,6]
[1,7]
[1,4]
0,1]

h INTELLIGENT
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Bayern Minchen

|

Dortmund Leverkusen

VFB Stuttgart  Schalke 04

|

Werder Bremen

|

VFB Wolfsburg

|

Hannover 96
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Distance measures that compare a (predicted) permutation 7 with a (target)
preorder <:

— The number of discordant pairs (NDP)
K
dc (1, =) =Y Y U7 < m:)l(a; < aj)
i=1 ji
— The maximum rank difference (MRD)

dy(7,<) = min max |1 — 7/
(7,2) reL= 1§7L§K| B

with £2 the set of linear extensions of <.
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An algorithm A is a (p,§)-PAC rank elicitation algorithm with respect to a
ranking procedure R and rank distance d, if it returns a ranking 7 for which

d(r,<%) < p

with probability at least 1 — 0.
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PAC RANK ELICITATION
Algorithm 1 RankEl (Y7 1,...,Yk k,p,0,€)
1: fori7,7=1— K do > Initialization
2: Yij < 0, Nij < 0
30 A {(t,j)|i#J,1 <4, < K}
4: t <0
5: repeat
6: for (i,j) € Ado
7: y~Y;; > draw a random sample
8: nij < nij;+1 > update number of samples drawn for Y; ;
0: update ¥; ; with y >Y = Uil ©Y = Wil w i
10: t+—t+1
11: A = SamplingStrategy(Y, N, 6, ¢, t, p)
12: until 0 < |4 4
13: 7 = GetEstimatedRanking(Y, N, 6, €, t) > calculate ranking based on Y and R
14: return 7

decides which pairwise preferences
still need to be sampled

h
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Define a ranking 7t over the arms a; by sorting them in decreasing order
according to
d§:#{j\1/2—6<g§,j—cﬁ,j,j#z‘} : sure wins
and in case of a tie (df = d’) according to
ui =#{Jjl[1/2—€1/2+ € C[pi; —ci;Pi;+cili#i} -
Moreover, let
It = [(d! < db +ub) A (d! < d! +ul)] possible wins

forall 1 <17 # j < K. Then, for any time step ¢, and for any sampling strategy,

K
1
O, CO.
dre (!, <%9¢) < 5 E E T, and da(7h, < )S%X\Tf—ﬁl T}

i=1 j#i T
with probability at least 1 — 4.
Choose a pair, for which the upper bound on the
prediction loss promises to decrease the most!
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Theorem (Busa-Fekete et al., 2014): The expected sample complexity for

RankEIS < is
O (K2 Ry log (%)) ,

2
K —T1

Ri= 3" (BAp+e) .

r=1

with

where A,y denotes the r-th smallest among the values A; ; = [1/2 — y; ;| for all
distinct 4,7 € [K], and

r1 = 2arg max {7" € [K?] |v§g€(r) < ,0} :

vcoe(r Y) = max min max dM(T jcc,)e).
da 27 Y Oc Y/e(Y Sl
YE(Y)r 37 €(Y)r

Empirically, significant gains are reported in comparison to random sampling.
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Preference learning is

— methodologically interesting,
— theoretically challenging,
— and practically useful, with many potential applications;

— more general than could be shown in this talk (,,preferences” in the broad
sense, standard ML problems as special cases, ...); in fact, a flexible machine
learning framework for learning from weak supervision;

— interdisciplinary (connections to operations research, decision sciences,
economics, social choice, recommender systems, information retrieval, ...).
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Preference-based online learning with multi-armed bandits (PB-MAB):

— emerging research topic,

— no complete and coherent framework so far,

— many open questions and problems (e.g., necessary assumptions on
preference relation to guarantee certain bounds on regret or sample
complexity, lower bounds, statistical tests for verifying model
assumptions, generalizations to large (structured) set of arms, contextual
bandits, adversarial setting, etc., practical applications, ...)
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